TIVER: Identifying Adaptive Versions of C/C++
Third-Party Open-Source components
Using a Code Clustering Technique

Youngjae Choi, Seunghoon Woo

KOREA UNIVERSITY
T Cyota [y seue,

KOREA UNIVERSITY = gamp” Privacy Laboratory

'SBOM (Software Bill Of Materials)

Motivation

Open-source software (OSS) reuse is widely adopted

-> Can expose system owing to propagated vulnerabilities

-> Reused OSS components, consist of files from various versions
Why: Code-level reuse (C/C++) / Partial reuse / Backporting patches

-> Current SBOM': single version per OSS component

-> |s this single-version approach robust enough for
modern supply chain security?

Problem

 Assigning single specific version for reused OSS components

Single-version approach

ReactOS libxml2

1libxml2

(v2.10.0) /

v2.10.0

TABLE I: Version distribution of reused Libxml2 source files

P r\O b 1 em in ReactOS (as of March 2024).

Version #Reused files Ratio
v2.9.10 4 6%
. . . v2.9.12 7 10%
[v2.10.0 48 71%
Assigning si 12100 i 14 components
v2.10.2 2 3%
v2.10.3 6 9%
Total 68 100%
Single-version approach
ReactO0S libxml2

1libxml2
(v2.10.0)

Software
vulnerabilit

v2.10.0

TABLE I: Version distribution of reused Libxml2 source files

P r\o b 1 em in ReactOS (as of March 2024).

Version #Reused files Ratio
v2.9.10 4 6%
. . . v2.9.12 7 10%
) v2.10.0 48 71%
Assigning sl 12100 i 14 components
v2.10.2 2 3%
v2.10.3 6 9%
Total 68 100%
Single-version approach
ReactOS libxml?2
A A

Current SBOM cannot be used to
identify this vulnerability!!!

\7' vulnerability"\/

Goal

* Identifying “adaptive version” of reused OSS
components in target software

* Adaptive version: A comprehensive representation
that encompasses the various versions present in
reused code

Challenges

1. Duplicate components
* Same 0SS is reused in multiple parts of target software

FreeBSD

OpenSSH
(v7.8.1)

Challenges

1. Duplicate components
* Same 0SS is reused in multiple parts of target software
* How single-version approach handles

FreeBSD

OpenSSH
(prevalent

version)

‘ Commonly used
algorithmic code

Challenges

2. Noise
* Code snippets commonly found across diverse OSS
* Interferes accurate version identification by being misclassified as OSS

ReactOS

1libxml2

‘ Commonly used
algorithmic code

Challenges

2. Noise
* Code snippets commonly found across diverse OSS
* Interferes accurate version identification by being misclassified as OSS

libxslt
(2.5.6)

ReactOS

1libxml2

.. 5
Originate from: (2.9.9)

10

‘ Commonly used
algorithmic code

Challenges

2. Noise
* Code snippets commonly found across diverse OSS
* Interferes accurate version identification by being misclassified as OSS

ReactOS libxslt
, , , (2.5.6)
How to identify noise?

1libxml2

.How to handlc? hoise 1ibxml?2
in term of versioning? (2.9.9)

TIVER< .

*adapTlve Version analyzER

* Novel approach to identify adaptive version of OSS
components

* Key techniques to overcome challenges
* Function-level versioning
* Code clustering

12

TIVER: Function-level versioning

* Existing single-version approaches

ReactOS libxml2 (v2.10.0)
v2.9.10 @
v2.9.12 ‘lﬁli" <::>
v2.10.0 @
v2.10.3 qlibezi’

libxm12
(v2.10.0)

QO

13

TIVER: Function-level versioning

* Existing single-version approaches

ReactOS libxml2 (v2.10.0)

libxm12
(v2.10.0)

QO

v2.10.0

14

TIVER: Function-level versioning

* TIVER: Function-level versioning

libxml2
ReactOS (adaptive version)

v2.9.10 @
' v2.9.12 'a
(adaptive versilon) a
v2.10.0
v2.10.3 aa

15

TIVER: Code Clustering

* TIVER uses filename as indicator

e known duplicates

* Examine known duplicates before
clustering process

e Same filename coexist in target software |

-> Redundant OSS reuse

OR

-> Already exist in original OSS

Directory hierarchy

E] 0SS E] dir E] file

of 0SS (GoogleTest)
Filament
third_party libs
. — — —
libgtest Libassimp geometry
) | . | A |
googletest contrib tests
) [g [[
gtest.cc gtest test_trans
| ~ | codercpp
gtest.cc

Known duplicates: NONE

16

TIVER: Code Clustering

* Code Clustering

e Use LCA (Lowest Common Ancestor)
* Distinguish duplicate components

* Cluster pruning

e Eliminate noise
e th =3%

Directory hierarchy

of 0SS (GoogleTest)

[Filament]

LCA
third_party
libgtest |ii| Libassimp |
r I 1 : 1 : I J 1
| googletest |[: contrib
1\ I J1 i\ I
gtest.cc gtest
|
0,
22.8% gtest.cc
45.9%
Cluster 1 Cluster 2

0.9%
(pruned)

Cluster 3

Known duplicates: NONE

17

*Invalid version: not following semantic versioning

TIVER: Adaptive version

{1.2.0} -> 1.2.0

.0, _

.0, 2.2.5, 1.2.0} -> *1 2 0 Per cluster
.0, 1.2.5, 1.3.2} -> ~1.2.0
.0, 1.2.5, 1.2

e Y st W e P O
|—\|—\Iw|—\
NlNNN

18

Evaluation

* Dataset

Functions present in all versions of 10,417 OSS projects
- 4,720,744 version strings

Functions
/
1 Popular 2,025 repositories in () GitHub (C/C++)
@ - Ranked by the number of stars
- 570 million lines of code

Repositories

Evaluation

* Accuracy

 # Duplicate component distinction
* 88% Precision & 92% Recall
e 230/273 components were TP

* # Noise elimination
e 86% Precision & 87% Recall
e 264/307 clusters were TP

20

Evaluation

* Accuracy

 # Duplicate component distinction

e 230/273 components were TP
* 88% Precision & 92% Recall

VS. CNEPS (ICSE 2024)

TIVER CNEPS

TP 46 20

FN 6 28

Recall 0.88 0.42

2]

Evaluation

* Effectiveness
* VS. V1SCAN (Single version based vulnerability detector)
* USENIX SECURITY 2023
* On average,

V1SCAN covers 1 version per component
TIVER covers 3.49 versions per component
V1SCAN cleanses 0 noisy region per component

TIVER cleanses 3.31 noisy clusters per component

22

T By previous single-version approach

[[J F BSD
Implication —

OpenSSH
(7.9.1%)

e Value of TIVER

* Enhances supply chain security through
precise version tracking

CVE-id vulnerable func reused version previous TIVER

CVE-2018-20685 fsink(~7.9.1) 8.0.1 Vulnerable (FP) Safe

CVE-2018-15919 fssn(~7.8.1) 7.8.1 Safe (FN) Vulnerable

23

Conclusion

* TIVER: novel approach for identifying adaptive versions of
C/C++ OSS components

* Function-level versioning
* OSS code clustering

* TIVER can be used to

* Perform effective OSS management
* Covers 3.49 versions & Cleanses 3.31 noisy clusters per component

* Enhance supply chain security
e Eliminated 81% of FPs from functions flagged as vulnerable by single-version approach

24

Q & A

Thank you for your attention!

* TIVER repository (https://github.com/Genius-Choi/TIVER-public)
* Dataset (https://zenodo.org/records/14862460)

Contact

* Youngjae Choi (youngjaechoi@korea.ac.kr)
._LI.E:ILHEE'E SSP LAB

Software Security and

KOREA UNIVERSITY Privacy Laboratory

* Software Security & Privacy Laboratory
e SSP LAB (https://ssp.korea.ac.kr)

25

https://github.com/Genius-Choi/TIVER-public
https://zenodo.org/records/14862460
mailto:youngjaechoi@korea.ac.kr
https://ssp.korea.ac.kr/

Appendix

-»- False positive -+ False negative

100

85 70 71 73

w
2 80 64
D 63 42 55 60 > 24
£ 6 (FN) 54 %3¢ ¢ > >
()]

4 | -
5 zg ><_”_:§9e 43 39 37 | | | | !
3 32 (FP) 33 31 28 27 25
+H-

o

0.01 002 003 004 005 006 007 008 0.09 0.1
Threshold (6)

Fig. 3: Experimental results for measuring sensitivity of 6.

26

Elapsed time (s)

Appendix

Avg: 1.67s
400
300 +
200 = -
100 T
0 SR -+ +
0 5000000 10000000 15000000 20000000

Lines of code (#)

27

	슬라이드 1: TIVER: Identifying Adaptive Versions of C/C++ Third-Party Open-Source components Using a Code Clustering Technique
	슬라이드 2: Motivation
	슬라이드 3: Problem
	슬라이드 4: Problem
	슬라이드 5: Problem
	슬라이드 6: Goal
	슬라이드 7: Challenges
	슬라이드 8: Challenges
	슬라이드 9: Challenges
	슬라이드 10: Challenges
	슬라이드 11: Challenges
	슬라이드 12: TIVER
	슬라이드 13: TIVER: Function-level versioning
	슬라이드 14: TIVER: Function-level versioning
	슬라이드 15: TIVER: Function-level versioning
	슬라이드 16: TIVER: Code Clustering
	슬라이드 17: TIVER: Code Clustering
	슬라이드 18: TIVER: Adaptive version
	슬라이드 19: Evaluation
	슬라이드 20: Evaluation
	슬라이드 21: Evaluation
	슬라이드 22: Evaluation
	슬라이드 23: Implication
	슬라이드 24: Conclusion
	슬라이드 25: Q & A
	슬라이드 26: Appendix
	슬라이드 27: Appendix

