
TIVER: Identifying Adaptive Versions of C/C++
Third-Party Open-Source components

Using a Code Clustering Technique

Youngjae Choi, Seunghoon Woo

KOREA UNIVERSITY

1

Motivation

Open-source software (OSS) reuse is widely adopted
-> Can expose system owing to propagated vulnerabilities
-> Reused OSS components, consist of files from various versions

Why: Code-level reuse (C/C++) / Partial reuse / Backporting patches

-> Current SBOM†: single version per OSS component

-> Is this single-version approach robust enough for
modern supply chain security?

†SBOM (Software Bill Of Materials)

2

Problem

• Assigning single specific version for reused OSS components

Single-version approach

ReactOS libxml2

v2.10.0
libxml2
(v2.10.0)

other
versions

3

Problem

• Assigning single specific version for reused OSS components

Single-version approach

ReactOS libxml2
other
versions

Software
vulnerability

libxml2
(v2.10.0)

v2.10.0

4

Problem

• Assigning single specific version for reused OSS components

Single-version approach

ReactOS libxml2
other
versions

Software
vulnerability

libxml2
(v2.10.0)

v2.10.0
Current SBOM cannot be used to
identify this vulnerability!!!

5

• Identifying “adaptive version” of reused OSS
components in target software

•Adaptive version: A comprehensive representation
that encompasses the various versions present in
reused code

Goal

6

Challenges

1. Duplicate components
• Same OSS is reused in multiple parts of target software

FreeBSD

OpenSSH
(v8.0.1)

OpenSSH
(v7.8.1)

7

Challenges

1. Duplicate components
• Same OSS is reused in multiple parts of target software

• How single-version approach handles

FreeBSD

OpenSSH
(v8.0.1)

OpenSSH
(v7.8.1)OpenSSH

(prevalent
version)

8

Challenges

2. Noise
• Code snippets commonly found across diverse OSS

• Interferes accurate version identification by being misclassified as OSS

9

ReactOS

libxml2

Commonly used
algorithmic code

Challenges

2. Noise
• Code snippets commonly found across diverse OSS

• Interferes accurate version identification by being misclassified as OSS

ReactOS

libxml2

Commonly used
algorithmic code

libxslt
(2.5.6)

10

libxml2
(2.9.9)Originate from?

Challenges

2. Noise
• Code snippets commonly found across diverse OSS

• Interferes accurate version identification by being misclassified as OSS

ReactOS

libxml2

Commonly used
algorithmic code

libxslt
(2.5.6)

11

libxml2
(2.9.9)Originate from?

2.5.6

2.9.9

How to identify noise?

How to handle noise
in term of versioning?

TIVER

•adapTIve Version analyzER
•Novel approach to identify adaptive version of OSS

components

•Key techniques to overcome challenges
• Function-level versioning
• Code clustering

12

TIVER: Function-level versioning

• Existing single-version approaches

libxml2 (v2.10.0)ReactOS

libxml2
(v2.10.0)

𝒇

𝒇

𝒇

𝒇

𝒇

𝒇

𝒇
v2.9.10

v2.10.0

v2.10.3

v2.9.12

13

TIVER: Function-level versioning

• Existing single-version approaches

libxml2 (v2.10.0)ReactOS

libxml2
(v2.10.0)

𝒇

𝒇

𝒇

𝒇

𝒇

𝒇

𝒇

v2.10.0

14

TIVER: Function-level versioning

• TIVER: Function-level versioning

libxml2
(adaptive version)ReactOS

𝒇

𝒇

𝒇

𝒇

𝒇

𝒇

𝒇
v2.9.10

v2.10.0

v2.10.3

v2.9.12libxml2
(adaptive version)

15

TIVER: Code Clustering

• TIVER uses filename as indicator

• known duplicates
• Examine known duplicates before

clustering process
• Same filename coexist in target software

-> Redundant OSS reuse

OR
-> Already exist in original OSS

Filament

third_party

Libassimp

contrib

gtest

gtest.cc

libs

geometry

tests

test_trans
coder.cpp

libgtest

googletest

gtest.cc

OSS dir file

Known duplicates: NONE
16

Directory hierarchy
of OSS (GoogleTest)

TIVER: Code Clustering

•Code Clustering
• Use LCA (Lowest Common Ancestor)

• Distinguish duplicate components

•Cluster pruning
• Eliminate noise

• th = 3%

Known duplicates: NONE

Filament

third_party

Libassimp

contrib

gtest

gtest.cc

libs

geometry

tests

test_trans
coder.cpp

libgtest

googletest

gtest.cc

Cluster 1 Cluster 2 Cluster 3

52.8%

45.9%

0.9%
(pruned)

LCA

17

Directory hierarchy
of OSS (GoogleTest)

TIVER: Adaptive version

{1.2.0} -> 1.2.0
{1.2.0, invalid_ver†} -> +1.2.0
{3.2.0, 2.2.5, 1.2.0} -> *1.2.0
{1.2.0, 1.2.5, 1.3.2} -> ^1.2.0
{1.2.0, 1.2.5, 1.2.7} -> ~1.2.0

Per cluster

†Invalid version: not following semantic versioning

18

Evaluation

• Dataset

Functions present in all versions of 10,417 OSS projects
- 4,720,744 version strings

Popular 2,025 repositories in GitHub (C/C++)
- Ranked by the number of stars
- 570 million lines of code

19

Functions

Repositories

Evaluation

• Accuracy

• # Duplicate component distinction
• 88% Precision & 92% Recall

• 230/273 components were TP

• # Noise elimination
• 86% Precision & 87% Recall

• 264/307 clusters were TP

20

Evaluation

• Accuracy

• # Duplicate component distinction
• 230/273 components were TP

• 88% Precision & 92% Recall

• # Noise elimination
• 264/307 clusters were TP

• 86% Precision & 87% Recall

21

VS. CNEPS (ICSE 2024)

TIVER CNEPS

TP 46 20

FN 6 28

Recall 0.88 0.42

Evaluation

• Effectiveness
• VS. V1SCAN (Single version based vulnerability detector)

• USENIX SECURITY 2023

• On average,

V1SCAN covers 1 version per component

TIVER covers 3.49 versions per component

V1SCAN cleanses 0 noisy region per component

TIVER cleanses 3.31 noisy clusters per component

22

Implication

• Value of TIVER
• Enhances supply chain security through

precise version tracking

FreeBSD

𝒇𝒔𝒔𝒉
(v7.8.1)

𝒇𝒔𝒊𝒏𝒌
(v8.0.1)

OpenSSH
(7.9.1 †)

† By previous single-version approach

23

CVE-id vulnerable func reused version previous TIVER

CVE-2018-20685 𝒇𝒔𝒊𝒏𝒌(~7.9.1) 8.0.1 Vulnerable (FP) Safe

CVE-2018-15919 𝒇𝒔𝒔𝒉(~7.8.1) 7.8.1 Safe (FN) Vulnerable

Conclusion

• TIVER: novel approach for identifying adaptive versions of
C/C++ OSS components
• Function-level versioning

• OSS code clustering

• TIVER can be used to
• Perform effective OSS management

• Covers 3.49 versions & Cleanses 3.31 noisy clusters per component

• Enhance supply chain security
• Eliminated 81% of FPs from functions flagged as vulnerable by single-version approach

24

Q & A

Thank you for your attention!
• TIVER repository (https://github.com/Genius-Choi/TIVER-public)

• Dataset (https://zenodo.org/records/14862460)

Contact
• Youngjae Choi (youngjaechoi@korea.ac.kr)

• Software Security & Privacy Laboratory
• SSP LAB (https://ssp.korea.ac.kr)

25

https://github.com/Genius-Choi/TIVER-public
https://zenodo.org/records/14862460
mailto:youngjaechoi@korea.ac.kr
https://ssp.korea.ac.kr/

Appendix

26

Appendix

27

Avg: 1.67s

	슬라이드 1: TIVER: Identifying Adaptive Versions of C/C++ Third-Party Open-Source components Using a Code Clustering Technique
	슬라이드 2: Motivation
	슬라이드 3: Problem
	슬라이드 4: Problem
	슬라이드 5: Problem
	슬라이드 6: Goal
	슬라이드 7: Challenges
	슬라이드 8: Challenges
	슬라이드 9: Challenges
	슬라이드 10: Challenges
	슬라이드 11: Challenges
	슬라이드 12: TIVER
	슬라이드 13: TIVER: Function-level versioning
	슬라이드 14: TIVER: Function-level versioning
	슬라이드 15: TIVER: Function-level versioning
	슬라이드 16: TIVER: Code Clustering
	슬라이드 17: TIVER: Code Clustering
	슬라이드 18: TIVER: Adaptive version
	슬라이드 19: Evaluation
	슬라이드 20: Evaluation
	슬라이드 21: Evaluation
	슬라이드 22: Evaluation
	슬라이드 23: Implication
	슬라이드 24: Conclusion
	슬라이드 25: Q & A
	슬라이드 26: Appendix
	슬라이드 27: Appendix

