
TIVER: Identifying Adaptive Versions of
C/C++ Third-Party Open-Source Components

Using a Code Clustering Technique
Youngjae Choi
Korea University

Republic of Korea
youngjaechoi@korea.ac.kr

Seunghoon Woo∗
Korea University

Republic of Korea
seunghoonwoo@korea.ac.kr

Abstract—Reusing open-source software (OSS) provides signif-
icant benefits but also poses risks from propagated vulnerabilities.
While tracking OSS component versions helps mitigate threats,
existing approaches typically map a single version to the reused
codebase. This coarse-grained approach overlooks the coexistence
of multiple versions, leading to ineffective OSS management.
Moreover, identifying component versions is further complicated
by noise codes, such as shared algorithmic code across different
OSS, and duplicate components caused by redundant OSS reuse.

In this paper, we introduce the concept of the adaptive
version, a one-stop solution to represent the version diversity
of reused OSS. To identify adaptive versions, we present TIVER,
which employs two key techniques: (1) fine-grained function-
level versioning and (2) OSS code clustering to identify duplicate
components and remove noise. This enables precise identifica-
tion of OSS reuse locations and adaptive versions, effectively
mitigating risks associated with OSS reuse. Evaluation of 2,025
popular C/C++ software revealed that 67% of OSS components
contained multiple versions, averaging over three versions per
component. Nonetheless, TIVER effectively identified adaptive
versions with 88.46% precision and 91.63% recall in duplicate
component distinction, and 86% precision and 86.84% recall
in eliminating noise, while existing approaches barely achieved
42% recall in distinguishing duplicates and did not address
noise. Further experiments showed that TIVER could enhance
vulnerability management and be applied to Software Bills of
Materials (SBOM) to improve supply chain security.

Index Terms—Open-Source Software, Third-Party Library
Management, Version Identification, Supply Chain Security

I. INTRODUCTION

Software reuse has become a cornerstone of modern soft-
ware development, with open-source software (OSS) accel-
erates development and reduces costs [1]–[4]. However, im-
proper OSS reuse can compromise the entire system (e.g.,
vulnerability propagation [5]–[10]). A key strategy to mitigate
this is identifying and tracking reused OSS versions and
updating vulnerable components (e.g., [11]–[14]).

In a real-world software ecosystem, especially in C/C++
software where code-level reuse is more dominant than
package-level reuse, OSS is rarely reused without modifi-
cations [4], [15]. Developers often use only parts of OSS,
apply backported patches, or unintentionally include redundant

* Corresponding author

copies due to nested dependencies [4], [16]. This adaptive
reuse results in a complex landscape where multiple OSS
versions coexist within a program, complicating version iden-
tification and security management.

Therefore, identifying the “adaptive version” of OSS com-
ponents — a comprehensive representation that encompasses
the various versions present in reused code — is crucial for
software security. However, this task is challenging by noise
and duplicate components, which can result in inaccurate
version identification and flawed vulnerability assessments.

• Noise. Code snippets that are commonly present in var-
ious OSS due to their brevity or the implementation of
widely used algorithms.

• Duplicate components. Cases where the same OSS is
reused in multiple parts of the target software, often with
different versions to satisfy specific requirements [16].

Removing noise ensures accurate version identification
by preventing unrelated code from being misclassified as
OSS [17]–[19], reducing false alarms in vulnerability reports.
Detecting duplicate components allows precise mapping of
OSS usage, each with unique vulnerabilities. Failure to distin-
guish duplicates can lead to overlooked version-specific issues
and compromised vulnerability assessments.

Limitations of existing approaches. To the best of our knowl-
edge, no existing approaches have considered the version
diversity of C/C++ components while attempting to distinguish
duplicate components and eliminate noise (see Section VI).
For example, CENTRIS [4] and V1SCAN [12] map only the
most prevalent version within a component, without consider-
ing duplicates and noise. CNEPS [16] made some progress by
partially identifying duplicate components; however, it did not
perform version identification and gave little consideration to
noise. While OSSFP [20] attempted to eliminate noise from
the perspective of component identification, it failed to apply
this to version prediction and did not consider version diver-
sity and duplicate components. This gap in current research
underscores the need for a more comprehensive solution to
identify C/C++ OSS component versions effectively.

2458

2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)

1558-1225/25/$31.00 ©2025 IEEE
DOI 10.1109/ICSE55347.2025.00188

Our approach. We present TIVER (adapTIve Version ana-
lyzER), a novel approach for the comprehensive identification
of adaptive versions in C/C++ OSS components.

The key concepts of TIVER, which are markedly distinct
from existing approaches, are (1) fine-grained versioning at
the function level and (2) an OSS code clustering technique.

Given a target software, TIVER identifies the OSS com-
ponents and specifies the OSS version for each reused func-
tion (see Section III-B). It adapts CENTRIS [4] to identify
components and then compares the codebase of the target
software with that of each OSS version. This process enables
TIVER to determine the specific versions associated with
reused functions. TIVER then utilizes OSS code clustering to
isolate the reused OSS code regions (see Section III-D). It
groups code segments expected to belong to the same OSS,
based on the file names and directory structures in which
the reused functions are located, thereby creating clusters.
Subsequently, clusters with duplicate source files are identified
as duplicate components, whereas clusters with a small pro-
portion of reused functions are considered noise and pruned.
Finally, TIVER aggregates the versions of the reused functions
within each cluster and identifies the adaptive version that
encompasses OSS version diversity (Section III-E).

Evaluation. When we applied TIVER to 2,025 C/C++ software
projects on GitHub, we observed that OSS components with
a single version accounted for only 33% of the total. Instead,
each component had more than three distinct versions, and
12% of the identified components were reused redundantly.

Despite various OSS reuse patterns in which different
versions coexist and redundant reuse occurs, TIVER can
effectively identify adaptive versions encompassing multiple
coexisting OSS versions. In particular, TIVER showed 88.46%
precision and 91.63% recall in duplicate component distinction
and 86% precision and 86.84% recall in noise elimination,
whereas existing approaches barely achieved 42% recall in
duplicate component distinction and failed to address noise
(see Section IV-A). We further demonstrate that by integrating
the adaptive versions identified by TIVER with the Software
Bill of Materials (SBOM) [21], TIVER can be used to improve
supply chain security, especially in detecting propagated vul-
nerabilities (see Section IV-D).

Contributions. We summarize our contributions below.
• We present TIVER, the first approach to effectively

identify adaptive versions of reused OSS components,
using fine-grained versioning and OSS code clustering
to distinguish duplicate components and eliminate noise.

• TIVER revealed that OSS components with a single
version made up only 33% of our dataset, emphasizing
the need to address multiple versions and proposing a
detailed process for identifying adaptive versions.

• Experiments on popular software show that TIVER effec-
tively identifies adaptive versions, distinguishes duplicate
components, and eliminates noise. We demonstrated that
TIVER can enhance supply chain security and vulnera-
bility management when used with the SBOM.

II. MOTIVATION

A. Terminology

We define several terms upfront.
• OSS reuse. This refers to utilizing a portion of OSS

functions or the entire OSS source code [4], [22].
• OSS component. An OSS component is a set of OSS

functions reused in a target program [4].
• OSS version. We define an OSS version to adhere to the

default three-component semantic versioning notation of
major.minor.patch [23].

• OSS update. We consider any change in the aforemen-
tioned three-component (i.e., major.minor.patch)
of an OSS version to constitute an update of the OSS.

B. Problem and goal statements

Problem. In this paper, we aim to address the problems
that occur when mapping a single version to a C/C++ OSS
component. In C/C++ languages, it is typical to reuse OSS
with code modifications [4], [5], [8], which involve updating
specific portions of the code to newer versions (e.g., through
backporting patches). Consequently, multiple versions of code
may exist within a single OSS component.

However, OSS management becomes inefficient when deter-
mining the version of OSS components as a single entity. One
of the critical issues is the difficulty in precisely identifying
vulnerabilities. As identified by V1SCAN [12], mapping a
single version to the entire component without considering
version diversity results in a 77% false positive rate for
vulnerability detection. Moreover, this can overlook certain
vulnerabilities and potentially leave unidentified threats.

Goal. Therefore, we aim to identify the issues arising when
mapping a single version to OSS components and propose a
solution to identify adaptive versions of C/C++ OSS com-
ponents for efficient third-party library management. Addi-
tionally, we intend to compile the issues that arise during the
identification of C/C++ OSS component versions and propose
policies that encompass diverse versions of reused OSS codes.

C. Motivating example

To demonstrate the importance of identifying an adaptive
version, we attempted to manage the OSS components of
ReactOS1, a free Windows-compatible operating system.

As of March 2024, the master version of ReactOS reused
68 source files from Libxml22. When the version of each
reused source file was identified by referring to the commit
history, six versions emerged. The distribution of the reused
versions is listed in Table I.

Limitations of existing approaches. Existing approaches [4],
[12] designed to identify the versions of reused OSS compo-
nents (at the source code level) have primarily focused on the
version to which the majority of functions belong. However,
this method results in inefficient vulnerability discovery.

1https://github.com/reactos/reactos
2https://gitlab.gnome.org/GNOME/libxml2

2459

https://github.com/reactos/reactos
https://gitlab.gnome.org/GNOME/libxml2

TABLE I: Version distribution of reused Libxml2 source files
in ReactOS (as of March 2024).

Version #Reused files Ratio
v2.9.10 4 6%
v2.9.12 7 10%
v2.10.0 48 71%
v2.10.1 1 1%
v2.10.2 2 3%
v2.10.3 6 9%
Total 68 100%

For example, when CENTRIS [4] was used, the reused ver-
sion of Libxml2 was v2.10.0. Applying this result to vulner-
ability detection, it can be concluded that ReactOS contains
two propagated vulnerabilities, CVE-2022-40303 and CVE-
2022-40304, which were reported to be present in Libxml2
versions prior to v2.10.2. However, the reused files containing
these vulnerabilities were updated by the ReactOS team to
v2.10.3 by backporting the security patches. Hence, these
results are false positives (FPs) because the vulnerabilities are
remediated. Similarly, if vulnerabilities are contained within
source files belonging to versions v2.9.12 or v2.9.10, existing
approaches overlook these vulnerabilities.

TIVER. TIVER can distinguish multiple versions mixed in
reused OSS codes and identify adaptive versions of OSS com-
ponents, thereby enabling effective vulnerability responses.
TIVER uses code clustering to (1) precisely identify reused
OSS code areas and (2) eliminate noise that hinders version
identification. For example, TIVER detects that the source
files under the ReactOS/dll/3rdparty/libxslt path
contain Libxml2 code because both libraries share a com-
monly used algorithmic code. TIVER identifies these as noise
and excludes them from the Libxml2 version identification.
Furthermore, if Libxml2 is redundantly reused in ReactOS,
TIVER determines the adaptive version for each reused code
area (see Section III-D). Finally, TIVER identifies the adaptive
version of Libxml2 (i.e., ˆ2.9.10; see Section III-E) and
tracks which version the reused functions belong to. This
ensures accurate component version tracking, even when spe-
cific functions are updated or experience delayed updates,
thus aiding effective library management. For instance, TIVER
can identify that the reused functions containing the two
aforementioned CVEs are from a version where vulnerabilities
have been patched, thereby preventing FPs. Moreover, it can
detect vulnerabilities present in versions prior to v2.10.0 (an
in-depth analysis of these issues is presented in Section IV-D).

III. DESIGN OF TIVER

We describe the design of TIVER, an effective approach for
identifying adaptive versions of C/C++ OSS components.

Considerations. Before introducing TIVER in detail, we
present two important considerations that need to be con-
sidered for the effective management of OSS by identifying
adaptive versions.

First, we address noise, which refers to common source code
found in various OSS projects. Since code that implements
common algorithms (e.g., cryptographic functions) appears

Target software

INPUT

Component Metadata

➊ OSS
Identification

➋ Version
normalization

Clusters

Noise (pruned)

Adaptive version
(per cluster)
OUTPUT

Vulnerability
detection & SBOM

➍ Adaptive
version

identification

➌ OSS code
clustering

Fig. 1: High-level overview of TIVER.

frequently in various OSS projects, this noise must be filtered
out to prevent misidentification. Our approach carefully sepa-
rates such common code from the unique characteristics that
distinguish specific OSS versions.

Second, it is important to distinguish duplicate components.
The target software may reuse the same OSS but different ver-
sions in various code sections to meet specific requirements.
In these cases, it is crucial to distinguish duplicate components
and carefully verify the version of each code section for
efficient OSS management (e.g., vulnerability assessment).

A. Approach overview

Figure 1 shows the high-level workflow of TIVER. The
distinguishing features of TIVER from existing approaches
include (1) considering fine-grained versioning at the function
level and (2) eliminating noise and distinguishing duplicate
components through OSS code clustering.

TIVER begins by identifying the codebase of each reused
OSS within the target software, accomplished by utilizing
CENTRIS [4], an OSS component identification tool.

Once the reused OSS components are identified, TIVER as-
signs versions based on the granularity of individual functions
rather than treating the entire component as a single entity.
This fine-grained versioning enables TIVER to capture the
diversity of versions that may exist in a single component.

After assigning a version to each reused function, TIVER
employs OSS code clustering to distinguish noise and dupli-
cate components from the reused OSS code areas.

Finally, TIVER identifies an adaptive version that encom-
passes diverse versions of the reused OSS code areas. This
is achieved by analyzing the versions of individual functions
within each component (excluding noise) and establishing a
representative version (or range) for the entire component. In
cases where duplicate components exist, adaptive versioning
is performed for each component.

Design assumption. TIVER identifies adaptive versions at the
source code level. TIVER can be applied to any granularity
level (e.g., files and functions); however, we focused on
function units. Function granularity is ideal for identifying
OSS components and adaptive versions as it reduces false
negatives (FNs) in OSS and version identification compared
to coarser units (e.g., files) and minimizes false positives
compared to finer units (e.g., lines) [4], [24].

2460

B. OSS identification
The initial phase involved identifying OSS components

within the target software. Because our goal is to identify an
adaptive version rather than precisely discover OSS compo-
nents, we leveraged CENTRIS [4] due to its ability to identify
modified OSS components, as well as its publicly accessible
source code and dataset [25].

However, the original CENTRIS tool provided only a list of
component names and reused source files. To align with our
goal, we modified the CENTRIS source code to include the
information listed in Table II in the output.

TABLE II: Modified output of CENTRIS.

Element Description
Component name The name of the identified OSS component.

Common functions Functions commonly present between each
identified component and the target software.

Path information The directory path of common functions in the
target program.

Segmented OSS versions Versions to which each common (reused)
function belongs in the original OSS.

The CENTRIS dataset lists the versions to which OSS
functions belong, making it easy to extract segmented OSS
versions. Note that CENTRIS focuses on component identifi-
cation and does not engage in adaptive version identification.

C. Version normalization
This paper considers three-component semantic versioning

(i.e., major.minor.patch; see Section II-A). However, ver-
sions can be handled in various ways in an OSS ecosystem.
Hence, TIVER normalizes versions to standardize heteroge-
neous version strings into a consistent format.

The algorithm operates in the following three steps.

S1. Numeric element extraction. TIVER first isolates nu-
meric elements from the input string. TIVER disregards
non-numeric characters that may vary across different
versioning schemes (e.g., in the case of “v0.0.1,” the
non-numeric character “v” is ignored).

S2. Semantic version construction. TIVER constructs a
standardized semantic version. The first extracted num-
ber is assigned as major. If major is present, the
second number is assigned to the minor version. TIVER
then parameterizes the delimiter of numbers (e.g., “.”
or “ ”). The third (or last) number is assigned as the
patch version and checked for delimiter consistency.

S3. Validation and augmentation. TIVER validates and
augments the constructed semantic version. When the
major and minor versions are present but patch is
missing, TIVER assigns “0” as the patch (i.e., zero-
padding). After applying the above steps, the version is
flagged as invalid if any element is missing.

For instance, OpenSSL_1_1 was normalized to a semantic
version with a major of 1, minor of 1, and patch of 0.
This normalization enhances the ability to standardize version
information across various OSS projects, thereby improving
the effectiveness of subsequent analyses.

D. OSS code clustering

To efficiently identify adaptive versions, TIVER employs
an OSS code clustering technique that aims to identify noise
and distinguish duplicate components. To achieve this, TIVER
leverages the following two key intuitions.

(1) Noisy regions contain only a few reused functions.
(2) Duplicate OSS codebases contain redundant files.

We use Google’s Filament (commit ID ce7dd7) as a
working example (see Figure 2). We assume a situation in
which noise and duplicate components are identified through
clustering for one component, and the working example intro-
duces the process of clustering for GoogleTest reused in
Filament. The clustering consisted of four steps.

Step 1: Directory hierarchy identification. The initial step
is to identify the directory structure of the target software and
determine where it reuses functions from the OSS project,
using the paths of the reused functions recorded in advance
(see Section III-B). The results are shown in a tree structure,
where the root node is the target software, the leaf nodes are
the reused source files from the OSS, and the inner nodes
are the target software directories. For example, Figure 2a
shows a part of the tree for Filament. Because geometry
uses general testing logic similar to GoogleTest, Figure 2a
indicates that the geometry directory also includes functions
reused from GoogleTest (i.e., noise).

Step 2: Known duplicates examination. To cluster the reused
code, TIVER utilizes the names of reused files: if OSS is
redundantly reused, files with the same name may coexist in
the target software (this is discussed in Section V-B). However,
duplicate files may exist in the original OSS. TIVER defines
duplicated files present in the original OSS code before reuse
as known duplicates. To effectively distinguish duplicate com-
ponents in later steps, TIVER identifies known duplicates and
their occurrences for each OSS using the CENTRIS database
(see Section IV). If the occurrences of duplicates varied across
OSS versions, TIVER considered the maximum value.

Step 3: Reused code clustering. Reused code clustering was
performed based on three main rules.

R1. By default, all child nodes that share the same Level-1
parent node are assigned to the same cluster.

R2. If files included in known duplicates redundantly exist
in the tree and their occurrences exceed the number
specified in known duplicates, TIVER locates the Low-
est Common Ancestor (LCA) and uses the LCA node
as a reference node to assign different clusters at the
immediate subordinate directory level. This operation is
performed only on directories containing duplicate files.

R3. If files that are not listed in known duplicates exist
redundantly in the tree, regardless of their occurrences,
TIVER locates the LCA and uses the LCA node as a ref-
erence node to assign different clusters at the immediate
subordinate directory level. This operation is performed
only on directories containing duplicate files.

2461

dir fileOSS

Filament

libs

testscontrib

libgtest

gtest.cc

third_party

Libassimp

gtest

gtest.cc

googletest

geometry

test_trans
coder.cpp

(a) Directory hierarchy identifi-
cation.

Filament

libs

testscontrib

libgtest

gtest.cc

third_party

Libassimp

gtest

gtest.cc

googletest

geometry

test_trans
coder.cpp

Known duplicates: NONE

(b) Known duplicates (of Goog-
leTest) examination.

Filament

libs

testscontrib

libgtest

gtest.cc

third_party

Libassimp

gtest

gtest.cc

googletest

geometry

test_trans
coder.cpp

Cluster I Cluster II Cluster III

(c) Reused code clustering based
on unknown duplicates.

Filament

libs

testscontrib

libgtest

gtest.cc

third_party

Libassimp

gtest

gtest.cc

googletest

geometry

test_trans
coder.cpp

52.8%

45.9%
0.9%

(pruned)

Cluster I Cluster II Cluster III

(d) Cluster pruning based on
code occupancy.

Fig. 2: Diagrams of OSS code clustering. These sequentially depict the clustering for the GoogleTest reused by Filament, and
the goal is to identify noise and distinguish duplicate components. Note that only some nodes are shown in each tree for ease of
explanation (e.g., in Figure 2d, because some clusters are omitted, the sum of clusters’ total proportions is less than 100%).

TIVER essentially performs clustering from lower to higher
levels, down to a level excluding the root node of the tree.
This involves starting each cluster from the Level-1 directory
to identify the noise that generally exists in paths different
from the OSS code area more efficiently.

Next, TIVER focuses on duplicate files. For the known
duplicates, clustering was performed by comparing the number
of occurrences. In contrast, the presence of unknown duplicates
indicates that an OSS is redundantly reused; thus, clustering
is performed regardless of its occurrence. We demonstrated
that filename-based clustering works effectively (see Section
IV-A), and further issues are discussed in Section V-B.

In our working example, all descendant directories and
files of third_party and libs are inherently grouped
into their respective clusters. TIVER verified that the orig-
inal GoogleTest contains no known duplicates. How-
ever, there are unknown duplicates (i.e., gtest.cc) in
the third_party cluster; thus, TIVER locates the LCA
(i.e., third_party) and creates two separate clusters
(i.e., third_party/libgtest/ and third_party/
Libassimp/; see Figure 2c). Because the rightmost cluster
does not contain any files common to the other clusters,
according to R1, it is clustered under libs. Using this
method, TIVER can identify the boundaries of OSS component
codebases within the target software.

Step 4: Cluster pruning. After clustering the tree, TIVER
performs pruning to eliminate noise. To achieve this, TIVER
measures the proportion of the reused functions in each cluster.
TIVER considers the total number of functions reused in the
target software to be 100%. TIVER calculates their respective
proportions based on the number of functions included in
each cluster. If the proportion of functions in any cluster
falls below a threshold θ (typically a small value), TIVER
considers this cluster noise and removes it from the directory
tree (experiments on the threshold sensitivity are presented
in Section IV-B). For example, in Figure 2d, if we set θ to
0.03 (3%), Cluster III is pruned because the proportion
of reused functions is 0.3% (i.e., less than 3%). After this
process, the remaining clusters are identified as reused OSS
code areas. If two or more clusters remain, TIVER decides that
it is a duplicate component and obtains an adaptive version for
each cluster area.

E. Adaptive version identification

Finally, TIVER assessed the adaptive versions of each clus-
ter. TIVER operates on the principle of identifying the most
conservative version range, which encompasses all versions
present within a given cluster.

Let V = {v1, v2, ..., vn} be the set of all unique versions
(vi) of the functions included in a cluster. When a function
belongs to multiple versions with the same syntax, only the
latest version is considered (this is discussed in Section V-A).
Version vi can be represented as a 3-tuple: (mi, ni, pi), where
mi, ni, and pi represent the major, minor, and patch,
respectively. Let vo be the oldest version of V , and let vx be
an invalid version (i.e., a version that failed to normalize). The
adaptive version va of the cluster is obtained as follows.

va =



vo if V = {vo}
+vo if V = {vo, vx}
∗vo if ∃vi, vj ∈ V .(mi ̸= mj)

ˆvo if
(
∀vi, vj ∈ V .(mi = mj)

)
∧
(
∃vi, vj ∈ V .(ni ̸= nj)

)
∼vo if

(
∀vi, vj ∈ V .

(
(mi = mj) ∧ (ni = nj)

))
∧
(
∃vi, vj ∈ V .(pi ̸= pj)

)
TIVER expands upon the semantic versioning of the Node

Package Manager (npm [26]) by incorporating additional
elements for more efficient version notation.

First, if all functions in a cluster share the same version,
which is not an invalid version, TIVER determines that version
to be the cluster version. Next, if there are one or more invalid
versions present in the cluster’s version set, but excluding the
invalid versions, if the cluster has only one unique version
(vo), TIVER denotes the version of the cluster as +vo.

When there is more than one normalized version in the
cluster, TIVER uses the following three notations: ∗, ˆ, and
∼. These notations are similar to the ones used in npm, but
we clarify the definition of each notation while simplifying it
further to avoid confusion with the existing conventions. The
scope of the three notations defined by TIVER is as follows.

• “*” allows for any major, minor, or patch increments.
• “ˆ” allows for minor and patch increments.
• “∼” allows only patch increments.

For example, consider an OSS component X (i.e., cluster)
with the following versions: [1.2.0, 1.2.5, 1.3.2, 1.4.0]. The
adaptive version for this component would be ˆ1.2.0, allowing

2462

minor and patch increments from 1.2.0 (i.e., vo) onwards,
such as 1.2.5, and 1.4.0, but not 2.0.0 or higher.

As part of supply chain security through using SBOM [21],
TIVER manages the version of all functions contained within
each cluster in a separate file (an example is presented in
Listing 4). While the adaptive version can provide a rough
idea of which versions of source files have been reused, this
information allows developers to address propagated vulnera-
bilities more easily.

For example, suppose a CVE vulnerability exists in version
1.4.1 of the abovementioned OSS component X . Because
the adaptive version is identified as ˆ1.2.0, developers should
determine whether this vulnerability has been propagated. In
this case, TIVER’s function-level versioning can be leveraged.
If the version of the reused function (associated with the CVE)
is not 1.4.1, developers can confirm that the vulnerability has
not been propagated. Conversely, if the function’s version is
1.4.1, developers can take appropriate actions, such as apply-
ing security patches. The practicality of TIVER in vulnerability
verification and management is introduced in Section IV-D.

IV. EVALUATION

In this section, we evaluate TIVER based on the following
four research questions.

• RQ1: Accuracy. How precise are the algorithms used by
TIVER for adaptive version identification?

• RQ2: Effectiveness. How effective is TIVER in identify-
ing an adaptive version that encompasses all the versions
present within each cluster?

• RQ3: Performance. How does TIVER perform in terms
of runtime and resource usage when analyzing large-scale
OSS components with complex version usage patterns?

• RQ4: Practicality. How can TIVER be utilized for supply
chain security (e.g., SBOM) and vulnerability detection?

We ran TIVER on a machine with a GNU/Linux 6.5.0-41-
generic x86 64, Intel (R) Core (TM) i9-14900K @ 5.70GHz,
64GB RAM, and a 2TB SSD.

Architecture of TIVER. TIVER consists of two modules: a
target parser and an adaptive version analyzer. The target
parser parses the C/C++ source code in the target software,
extracts, and hashes every function contained (for applying
CENTRIS). It utilizes Ctags [27], a robust regular expression-
based parser, to identify and extract the functions. The adap-
tive version analyzer identifies adaptive versions using reused
code clustering. It utilizes the Anytree library [28], which
provides efficient data structures and algorithms for building
and manipulating tree structures. TIVER was implemented in
Python, with its main functionality spanning approximately
1,000 lines of code, excluding external libraries.

OSS dataset. To operate TIVER, CENTRIS must first identify
OSS components. Hence, we leveraged a dataset containing
10,417 OSS projects [25], originally curated in April 2020
by CENTRIS and updated in April 2022 by V1SCAN. This
dataset includes functions present in the OSS projects across

all their versions. Because our goal is not limited to identifying
adaptive versions in only the latest systems, we determined
that conducting experiments with this dataset does not raise
critical concerns regarding the evaluation of TIVER.

Target software selection. To demonstrate the generality of
TIVER, we selected popular software from GitHub as our
target. We collected the top 2,025 GitHub C/C++ software
packages based on their stargazer counts (i.e., a popularity
indicator). We determined that this large-scale target dataset,
with a total of 570 million lines of code, was suitable for
evaluating the effectiveness, accuracy, and performance of
TIVER. To effectively utilize the OSS dataset, we evaluated
the target software using an older version (i.e., the version
released closest to April 2022 for each target software).

A. Accuracy of TIVER

Methodology. Because we introduce the concept of adaptive
versions for the C/C++ components for the first time, there is
no existing ground truth available. Moreover, defining criteria
for accuracy assessment is complex due to the fact that any
reused function’s version falls within the adaptive version,
while functions from versions outside this range are not reused.

Therefore, we evaluated the accuracy of the following key
techniques crucial for TIVER: (1) duplicate component dis-
tinction, (2) noise elimination, and (3) version normalization.
Because there is no ground truth available, we manually
examined all results with two analysts: one with over 10 years
of experience in software engineering and security, and the
other with over three years. Initially, we verified CENTRIS’s
accuracy by cross-referencing the OSS and directory names
of the reused functions. Next, we measured the FPs and FNs
of TIVER. We can closely examine TIVER’s results because
TIVER provides all the reused components’ functions and
files in a tree structure. Specifically, we reviewed the paths
and names of the directories and files in the clusters, refer-
ring to the source code when necessary. If a non-duplicated
component is split during clustering or if non-noise code is
eliminated, it is considered an FP of TIVER. Conversely, if
undistinguished duplicate components or unremoved noise are
observed, it is classified as an FN of TIVER. Any discrepancies
between the analysts were resolved through discussion. We
implemented TIVER on the target software using a pruning
threshold θ of 0.03 (see Section IV-B for details).

Adaptive version identification results. Among the 3,109
components identified in the target software by CENTRIS,
1,191 (38.3%) OSS results were FPs and were therefore
excluded. Note that the results of CENTRIS are independent
of the performance of TIVER. Even if CENTRIS identifies
incorrect components, TIVER can treat the misidentified func-
tion set as a component and precisely identify adaptive ver-
sions. However, because a misidentified function set is not
particularly meaningful in practical applications, we decided
to exclude these results.

For the remaining 1,918 OSS components, TIVER identified
3,351 clusters and found that 12% (230 of 1,918) of the

2463

TABLE III: Accuracy of the TIVER’s algorithms for 2,025 target software. TIVER identified adaptive versions of 3,351 clusters
(after pruning) among 1,918 reused OSS components by effectively identifying duplicate components and removing noise.

Tool
#Target software

#Detected
components

#Total
clusters

Duplicate component distinction Noise elimination

Total Including
components

#TP #FP #FN Precision Recall #TP #FP #FN Precision Recall

TIVER 2,025 869 1,918 3,351 230 30 21 88.46% 91.63% 264 43 40 86.00% 86.84%

Listing 1: Example of an FP in duplicate component distinction.
Note that the original pybind11 contains only “.cpp” files, but
the TNN team created “.cc” files by cloning the original files.

1 TARGET: TNN (https://github.com/Tencent/TNN)
2 OSS: pybind11 (https://github.com/pybind/pybind11)
3 ===
4 TNN/tools/onnx2tnn/onnx-converter/pybind11/test/
5 ⊢ test_buffers.cc (file)
6 ⊢ test_buffers.cpp (file)
7 ⊢ test_class.cc (file)
8 ⊢ test_class.cpp (file) ...

identified components were redundantly reused. In addition,
TIVER identified 264 noise clusters, removed them, and iden-
tified the adaptive versions of the remaining clusters. Table III
summarizes the accuracy of the TIVER algorithm.

Duplicate component distinction accuracy. TIVER identified
273 duplicate components out of 1,918 reused components.
Among these, 230 were true positives (TPs), demonstrating a
precision of 88.46% and recall of 91.63%.

Most FPs occurred when developers cloned a reused code
and maintained it under the same file name but with a different
extension (see Listing 1). TIVER misinterprets these instances
as duplicate components and separates them into clusters.
Although these could be considered duplicates, they were
not cases where developers reused OSS in multiple locations.
Therefore, we classified them as FPs for TIVER.

In contrast, FNs occurred when the OSS was reused dis-
jointly (except for the same file) or when the file name was
completely changed while being reused. Although this was
not common, and thus FNs were relatively lower than FPs,
in these cases, TIVER failed to correctly separate the clusters,
resulting in FNs in duplicate component identification.

We further compared TIVER with CNEPS [16]. While
CNEPS focuses on dependencies rather than versions, it iden-
tifies duplicates based on function-call relationships. If a
function in an OSS is called from multiple locations with
different header paths, it is considered a duplicate component.
We evaluated ten target software: five with three or more
TPs and five with at least one FN in the TIVER results.
In CNEPS, the FP criterion is ambiguous because detecting
multiple dependencies does not necessarily imply that they
are duplicates, our focus was on comparing TPs and FNs.

Table IV summarizes the comparison results. Notably,
CNEPS did not detect any duplicates that TIVER missed.
TIVER precisely distinguished most of the duplicate compo-
nents, showing higher recall than CNEPS. In contrast, CNEPS
produced many FNs, such as when call relationships were
ambiguous or when duplicate components existed but the
callee functions were different, resulting in only 42% recall.

TABLE IV: Accuracy comparison between TIVER and CNEPS.
Target

software
TIVER CNEPS [16]

#TP #FN #Recall #TP #FN #Recall

OpenBSD 9 0 1.00 3 6 0.33
Node-packer 8 0 1.00 5 3 0.63

AliOS-Things 6 0 1.00 1 5 0.17
FreeBSD 5 1 0.83 1 5 0.17

Overgrowth 5 0 1.00 4 1 0.80
YDB 3 1 0.75 2 2 0.50

MAME 2 1 0.67 2 1 0.67
Fastsocket 2 1 0.67 1 2 0.33

Blender 1 1 0.50 1 1 0.50
Urho3D 1 1 0.50 0 2 0.00

Total 42 6 0.88 20 28 0.42

Noise elimination. Next, we evaluated the accuracy of the
noise elimination process. TIVER identified 307 clusters as
noise from all detection results. Among these, 264 were TPs,
resulting in a precision of 86% and recall of 86.84%.

Most FPs in noise elimination were caused by reasons
similar to those in distinguishing duplicate components. When
developers reuse OSS code and clone it under the same file
name, TIVER locates the cloned code as separate clusters. If
the proportion of functions included in this cluster is less than
θ, TIVER considers them noise (see Section III-D), resulting
in FPs in noise elimination.

Establishing clear criteria for identifying FNs is challenging.
We considered cases where code was not explicitly contained
in OSS (e.g., referring to its repository) but was not pruned
in noise elimination as FNs. Most FNs occurred when the
noise cluster shared the same Level-1 node with the reused
OSS code regions but had different file names from the reused
OSS codebases. In addition, they occurred in cases where the
code was not explicitly part of the OSS code region but shared
sufficient code to avoid pruning (e.g., generating test files by
referencing the testing logic of GoogleTest). In such cases,
TIVER fails to eliminate noise, thereby yielding FNs.

Although TIVER yielded false alarms in certain scenarios,
to our knowledge, no attempts have been made to eliminate
noise in OSS version identification in the presence of duplicate
components. We believe that TIVER is effective because it can
reduce most of the noise through code clustering.

Version normalization. We examined the results of version
normalization using 4,720,744 version strings, which represent
the versions of all the reused functions in the detected OSS
components. First, TIVER reported that 61.64% (2,890,772) of
its versions aligned with the normalization algorithm without
any issues. Additionally, 26.35% (1,235,802) of the versions
were successfully normalized through zero-padding. The re-
maining 12% of the version strings were deemed invalid.

2464

TABLE V: Effectiveness of TIVER.

Approaches #Target #Components VDI NCI

V1SCAN [12] (baseline)
869 1,918

1 0
TIVER 3.49 3.31

Most of the invalid versions consisted solely of strings, such
as tags created for testing purposes (e.g., “ms-bug-test”).
We assert that identifying invalid versions is not a shortcoming
of TIVER but rather a necessary step to exclude versions unre-
lated to semantic versions when identifying adaptive versions.
Therefore, this underscores the effectiveness of the TIVER
version normalization algorithm.

Answer to RQ1. TIVER effectively identified the adaptive
versions of reused OSS code locations by (1) distin-
guishing duplicate components with 88.46% precision and
91.63% recall, (2) pruning noise with 86% precision and
86.84% recall, and (3) effectively distinguishing between
valid and invalid versions through version normalization.

B. Effectiveness of TIVER

Methodology. To demonstrate the effectiveness of TIVER, we
compared it with V1SCAN [12], which detects vulnerabilities
based on the prevalent version of detected components. Since
V1SCAN only maps one version to a component, instead
of conducting an unfair experiment criticizing V1SCAN, we
assessed TIVER by comparing it to a baseline that maps a
single version without considering duplication and noise.

In this context, we consider the following two metrics.

1. Version diversity index (VDI). This metric indicates
how well an approach can cover version diversity. It
represents the extent to which different versions coexist.

VDI =
#Identified distinct OSS versions

#OSS components
2. Noise cleansing index (NCI). This index indicates how

well an approach addresses unnecessary versions in the
noise that hinders precise version identification.

NCI =
#Unique OSS versions contained in the noise

#OSS components

Result analysis. Table V summarizes the measurement results.
Unlike V1SCAN that mapped only one version to a component
(VDI: 1), TIVER confirmed that, on average, more than three
versions (VDI: 3.49) coexist and proposed adaptive versions
to encompass them. Compared to V1SCAN, which does not
consider duplicates and noise (NCI: 0), TIVER distinguishes
duplicate components and identifies the versions of the reused
OSS by removing more than three noisy versions (NCI: 3.31).
In summary, TIVER covers more versions than the baseline
and removes noise that interferes with version identification,
thereby demonstrating its effectiveness in OSS management.

Case study. We demonstrate TIVER’s effectiveness with a
case study of Unbound OSS in OpenBSD (commit ID
555665). Unbound was redundantly used in two paths:
OpenBSD/usr.sbin/unbound and OpenBSD/sbin/
unwind/libunbound. There was considerable noise due

Listing 2: Directory structure of OpenBSD where reused code
from Unbound exists.

1OpenBSD/ // Clusters before removing noise
2 ⊢ usr.sbin/unbound/ [C1] (proportion: 0.582)
3 | ⊢ rbtree.c (file) ...
4 ⊢ usr.sbin/nsd/ [C2] (proportion: 0.010)
5 | ⊢ rbtree.c (file) ...
6 ⊢ sbin/unwind/libunbound/ [C3] (proportion: 0.398)
7 | ⊢ rbtree.c (file) ...
8 ⊢ gnu/ ... [C4] (proportion: 0.008)
9 ⊢ lib/libc/crypt/ ... [C5] (proportion: 0.001)

32 39

54 55 60
64 70 71 7385

63

39 37 33 31 28 27 25
0

20

40

60

80

100

43
(FP)

42
(FN)

#
D

e
te

ct
e
d
 r

e
su

lt
s

Threshold (θ)

0.01 0.10.090.080.070.060.050.040.030.02

False positive False negative

Fig. 3: Experimental results for measuring sensitivity of θ.

to the cryptography and parsing-related functions included in
the original Unbound codebase. The clusters identified by
TIVER for the Unbound group were shown in Listing 2.

TIVER effectively identifies duplicate components and re-
moves noise using code clustering. For instance, C1 and C2,
which share the Level-1 node (usr.sbin), were separated
owing to the unknown duplicate (rbtree.c). C1, with a
high proportion of functions (0.582), was retained, while C2,
with a minimal proportion (0.01), was eliminated as noise. C3
was kept for its significant reuse (0.398), while C4 and C5,
containing mostly algorithmic code, were eliminated. Conse-
quently, only clusters C1 and C3 remained, allowing TIVER
to confirm the redundant reuse of Unbound. The adaptive
version is identified for each cluster after noise pruning.

Threshold sensitivity. We used a θ value of 0.03 in our
experiments. To measure threshold sensitivity, we investigated
each noise elimination result of TIVER while increasing θ by
0.01 from 0.01 to 0.1.

Figure 3 presents the measurement results. We confirmed
that as θ decreases, the possibility of eliminating noise de-
creases (i.e., more FNs), and vice versa. Although the dif-
ference was not considerable, we selected the point where
the balance between FN and FP was the most optimal.
Specifically, when θ was set to 0.03, the balance between FN
and FP was optimal, and notably, the total number of false
results (i.e., 85) was the lowest among all threshold values
(i.e., the F1-score was highest when θ was 0.03).

The fact that the accuracy of noise elimination does not
change exponentially with different θ values demonstrates the
overall high efficiency of our algorithm. Furthermore, we set
θ to 0.03 in the experiment to achieve balanced results.

Answer to RQ2. TIVER demonstrates its effectiveness
by (1) covering various versions that coexist in reused
code regions, (2) identifying duplicate components, and
(3) improving version identification accuracy by removing
noise. The case study demonstrates TIVER’s capability to
identify adaptive versions even in complex reuse scenarios.

2465

0

100

200

300

400

0 5000000 10000000 15000000 20000000E
la

p
se

d
 t

im
e
 (

s)

Lines of code (#)

Fig. 4: Elapsed time for identifying adaptive versions in 869
popular C/C++ software programs with various code sizes.

C. Performance of TIVER

We assessed the performance and scalability of TIVER by
measuring the time required to identify the adaptive version
across target software sizes ranging from 1K to 20M lines of
code (excluding the CENTRIS execution time). Figure 4 shows
the results of the elapsed time measurements. We confirmed
that TIVER can quickly identify the adaptive version of OSS
components, even as the target software code size increases.
Specifically, TIVER identified the adaptive version within an
average of 1.67 s per target software (median of 0.03 s). While
TIVER took slightly longer for some OSS with a very large
number of components or extensive code size, it successfully
identified the adaptive version within 30 s for all but five target
software programs. The rapid performance of TIVER suggests
that it can be effectively used for OSS management in practice.

Answer to RQ3. TIVER identified the adaptive version of
the OSS components within an average of 1.67 s (i.e., fast
enough), without being significantly affected by the code
size of the target software (i.e., scalable).

D. Practicality of TIVER

TIVER can be effectively utilized in vulnerability manage-
ment, which is particularly critical in supply chain security.

Methodology. For the 1,918 OSS components identified in
Section IV-A, we initially discovered vulnerabilities using
CENTRIS (i.e., a single version-based approach), referencing
the CPE of the NVD to extract vulnerabilities associated with
the identified OSS and version [12]. We then used TIVER to
examine the FPs and FNs of this approach, focusing on the
vulnerabilities associated with the reused OSS and version.

1. Extract vulnerable functions. We extract functions as-
sociated with CVEs (i.e., vulnerable functions) identified
through the single version-based approach [8], [24], [29]

2. Check function reuse. TIVER then determines whether
the vulnerable function has been reused in the target
program. First, TIVER checks whether a function with the
same name as the vulnerable function exists in the target
software. If none is found, it searches for similar code
using TLSH hashes stored by CENTRIS, which enable the
detection of similar hashes [4]. If the vulnerable function
has not been reused, TIVER defines this as an FP.

3. Verify function version. For components with multiple
versions, TIVER examines each reused function’s version.
If the vulnerable function is reused but its version is not
affected by the CVE, TIVER marks it as an FP.

TABLE VI: The practicality of TIVER in vulnerability verifica-
tion and management (for 1,918 OSS components).

Category Count

• #Discovered vulnerable functions (single version-based) 2,267
- #FPs identified by TIVER

- #FPs caused by unused code 1,359
- #FPs caused by function updates 488

+ #FNs that can be overcome by TIVER 507
• Total vulnerable functions verified by TIVER 927

4. Identify missed vulnerabilities. Finally, TIVER iterates
through all CVEs for the OSS, extracting vulnerable
functions. If a vulnerable function (1) is reused in the
target program, (2) belongs to an affected version, and (3)
was missed by the single version-based approach, TIVER
identifies it as an FN.

Result. Table VI summarizes the practicality evaluation re-
sults. Among the 1,918 OSS components, the single version-
based approach initially discovered 2,267 vulnerable functions
(associated with 314 CVE IDs) across 160 components. This
high number was due to testing on older versions for a fair
comparison with CENTRIS.

Using TIVER, more advanced vulnerability management
was achieved. TIVER identified:

• 1,359 FPs where vulnerable functions were not reused.
• 488 FPs where vulnerable functions were reused but

updated to safe versions.
In total, TIVER eliminated 1,847 FPs (81.47%) from the

2,267 functions identified by the single version-based ap-
proach. Manual verification of approximately 10% of the
FPs confirmed that these vulnerable functions were either not
reused or had been patched (i.e., correct FPs).

In addition, TIVER identified 507 previously missed vul-
nerable functions (i.e., FNs) that were overlooked by the
single version-based approach because the overall version was
determined based on the version to which the majority of
reused functions belong. These vulnerabilities were difficult to
detect without TIVER’s finer-grained function-level versioning.

In conclusion, TIVER demonstrated its practicality by lever-
aging fine-grained versioning and adaptive versions to sig-
nificantly reduce both FPs and FNs, enhancing vulnerability
verification and management.

Case study. FreeBSD (v12.2.0) reuses OpenSSH, primarily
based on version V 7 9 P1, but incorporates over 10 different
versions within the reused code. The SBOM for FreeBSD can
appear as follows (using the CycloneDX [30] format).

First, TIVER can identify areas where OSS has been reused,
thereby contributing to supply chain security. For example, be-
fore pruning (see Listing 4), TIVER detected reused OpenSSH
functions spanning versions 2.5.2 to 8.0.1. While existing
approaches [4], [12] considered all these versions, TIVER
accurately pruned noisy versions, identifying the adaptive
version as ∗7.8.1. By specifying the version of each reused
function (i.e., lines #7, #10, and #14 in Listing 4), TIVER aids
in SBOM creation and improves vulnerability detection.

2466

Listing 3: Part of FreeBSD’s CycloneDX SBOM using the
adaptive version identified by TIVER.
1 <?xml version="1.0" encoding="UTF-8"?>
2 <bom xmlns="http://cyclonedx.org/..." version="1">
3 <metadata> ...
4 <component type="operating-system">
5 <name>FreeBSD</name>
6 <version>12.2.0</version> ...
7 <components>
8 <component type="library">
9 <name>OpenSSH</name>

10 <version>*7.8.1</version> ...

Listing 4: Supplementary material for detailed OSS management
includes the code areas where OpenSSH is reused in FreeBSD
and the versions of each reused function (see Section III-E).
1 OpenSSH
2 (Before pruning) Identified adaptive version: *2.5.2
3 (After pruning) Cluster C1’s adaptive version: *7.8.1
4 ===
5 crypto/openssh [C1] // FreeBSD/crypto/openssh
6 ⊢ scp.c (file)
7 | ⊢ sink (function): 8.0.1
8 ...
9 ⊢ gss-genr.c (file)

10 | ⊢ ssh_gssapi_check_mechanism (function): 7.8.1
11 ...
12 ⊢ contrib (directory)
13 | ⊢ gnome-ssh-askpass2.c (file)
14 | | ⊢ passphrase_dialog (function): 8.0.1
15 ...

Using TIVER, more advanced vulnerability management
is possible. For example, searching for vulnerabilities in
OpenSSH V 7 9 P1 in the CVE report3 returned 13 re-
sults [4], [12], but not all are relevant to FreeBSD.

• FP example. CVE-2018-20685 (incorrect authoriza-
tion in the sink function, affecting up to OpenSSH
7.9.1) was flagged by existing approaches as affecting
FreeBSD. However, TIVER identified the sink function
as originating from OpenSSH 8.0.1 (line #7 in Listing 4),
confirming the issue was resolved in FreeBSD.

• FN example. CVE-2018-15919 (information disclosure
in ssh_gssapi_check_mechanism, affecting up to
OpenSSH 7.8.1) was missed by existing approaches fo-
cused on version 7.9.1. TIVER identified this function as
originating from OpenSSH 7.8.1 (line #10 in Listing 4),
showing that the vulnerability remained unpatched in
FreeBSD 12.2.0 but was addressed in later versions.

By identifying the functions harboring each vulnerability
and validating the versions of the reused functions (a process
that can be easily automated), TIVER can detect only propa-
gated vulnerabilities.

Answer to RQ4. TIVER can be practically utilized to
enhance supply chain security, particularly by improving
the efficiency of vulnerability verification and management
(e.g., eliminating FPs, which account for 81.47% of the
detection results from the single version-based approach).

3https://www.cvedetails.com/vulnerability-list/vendor id-97/product id-
585/version id-1295245/Openbsd-Openssh-7.9.html

V. DISCUSSION

A. Considering the latest versions of reused functions

When TIVER assesses the adaptive version for each cluster,
it considers the latest versions of the included functions (see
Section III-E). From the perspective of OSS management, our
choice to consider the latest version can be justified. In the
latest version among the versions that a function belongs to,
vulnerabilities present in previous versions are resolved. If
versions other than the latest one are considered, it may lead
to the false impression that resolved vulnerabilities still exist,
resulting in FPs. Hence, TIVER identifies the adaptive version
by considering the latest versions of the reused functions.

B. Using filenames as indicators for clustering

TIVER identifies duplicate components by examining reused
file names. While we initially used function source code for
finer granularity, this approach increased false alarms. For
example, when different versions of OSS are redundantly
reused, the same function may have different syntax. Address-
ing this requires similarity-based matching, but this frequently
misidentifies functions with similar syntax as identical, signif-
icantly reducing clustering accuracy. We determined that this
case occurs far more frequently and causes a greater loss in
accuracy compared to changes in file names.

Specifically, when we investigated cases where file names
had changed, in our setup, this accounted for 0.6% of the
total (2,558 out of 433,485 reused files). In such cases, TIVER
may produce incorrect results in clustering. However, this is
a rare case, and thus we decided that utilizing file names
has advantages compared to other levels of granularity. Our
experiments demonstrated that the file name-based approach
is sufficiently effective (see Section IV-A).

C. Applications of TIVER

Including the aspects mentioned throughout the paper,
TIVER can be applied in various ways to enhance supply chain
security. For example, by identifying reused code areas and
determining the version of each function, TIVER can pinpoint
the modified sections, which can contribute to more efficient
SBOM generation. Furthermore, when multiple products in a
product line reuse the same OSS, TIVER can reduce manage-
ment complexity by tracking the version and code areas of the
OSS used in specific product versions. This can help prevent
conflicts between product variations.

D. Threats to validity

To demonstrate TIVER’s generality, we conducted experi-
ments using 10,417 OSS components and 2,025 popular soft-
ware programs. While this dataset provides valuable insights,
it may not fully represent the entire OSS ecosystem. Next,
due to the lack of ground truth, two annotators manually
analyzed TIVER’s detection results. Most cases (95.6%) were
clearly classified, with conflicts in only 84 out of 1,918
cases, resolved through discussion. However, differences in
experience between the annotators introduced potential bias,

2467

https://www.cvedetails.com/vulnerability-list/vendor_id-97/product_id-585/version_id-1295245/Openbsd-Openssh-7.9.html
https://www.cvedetails.com/vulnerability-list/vendor_id-97/product_id-585/version_id-1295245/Openbsd-Openssh-7.9.html

as most conflicts were resolved in favor of the more experi-
enced analyst. Next, the concept of adaptive version was first
introduced in TIVER, making direct comparisons with existing
research infeasible. Comparisons with CNEPS and V1SCAN
aimed to demonstrate TIVER’s effectiveness, not critique prior
methods. In addition, in the experiment measuring the prac-
ticality of TIVER, if the CPE provides incorrect vulnerable
version information, our results may contain minor errors.
Finally, while efforts were made to align collection dates
of software and OSS datasets, slight discrepancies may have
caused minor differences between identified and actual reused
versions.

E. Limitations and future work

Despite the significant contributions of TIVER, several
limitations should be acknowledged. First, TIVER can only
identify adaptive versions when the source code of the target
software is provided. Next, although TIVER demonstrates high
accuracy, it struggles to correctly distinguish duplicate compo-
nents where there are no overlapping files among each reused
code region. Simply considering the finer granularity does not
address this issue, because these are more frequently changed
during the OSS reuse process than file names (see Section
V-B). Therefore, we plan to investigate methods to utilize
alternative granularities and methods to resolve this challenge.
In addition, a reused function may not belong to any version
of the OSS due to developers’ custom-modifications. When
identifying the version of a reused function, we utilized the
CENTRIS dataset, which mapped functions that did not belong
to any version of the OSS to the version with the most similar
function. From a supply chain security perspective, custom-
modified functions can also have considerable implications.
Because this issue is more of a policy matter than a technical
limitation and represents a tiny portion (less than 1% in our
experiment), we did not consider it in the current study; if it
becomes an issue, we plan to conduct research on this aspect as
well. Finally, TIVER cannot be applied in cases of OSS reuse
through package managers or the reuse of compiled libraries
(e.g., “.so” or “.dll”), as it does not handle these scenarios.

VI. RELATED WORK

Many studies have been proposed to identify reused third-
party OSS components (e.g., [2]–[4], [11], [16], [31]–[36]).
For example, CENTRIS [4] utilizes code segmentation for
identifying modified OSS components. LibD [32] employs a
feature hashing technique to detect reused third-party libraries.
CNEPS [16] attempted to examine dependencies among OSS
components. OSSFP [20] attempted to detect third-party com-
ponents by generating unique fingerprints of OSS. While
OSSFP tried to remove noise, this was noise in component
detection rather than in version identification, which could
lead to necessary code for OSS version identification being
mistakenly identified as noise and removed. Furthermore, they
failed to consider duplicate components and version diversity.

Although these approaches can contribute to supply chain
security by identifying third-party libraries, there has been

no existing approach that effectively distinguishes duplicate
components (see Section IV-A) and removes noise, which are
prerequisites for identifying the adaptive version.

Several approaches have attempted to identify the versions
of third-party libraries (e.g., [2], [4], [12], [14], [35], [37]–
[41]). CENTRIS [4] and V1SCAN [12] identify the predom-
inant version of each component as the main version. Bina-
ryAI [35] and LIBVDIFF [14] operate at the binary level to
identify OSS components and map them to specific versions.
VES [37] extracts a version in binary as a single string,
utilizing data-flow analysis. OSSPOLICE [2] and LIBRAR-
IAN [39] also assign a single version to identified OSS
components. LIBDB [40] adopts a function call graph-based
comparison to detect third-party libraries, FIRMSEC [41] de-
termine the OSS version with the number of matched features.

These approaches can be utilized for supply chain security
through vulnerable version identification. However, they fail
to overcome the version diversity issue addressed in this
paper. Moreover, they lack methods to effectively distinguish
duplicate components and eliminate noise. Therefore, they
cannot be applied to solve our target problem.

VII. CONCLUSION

Software reuse has led to the coexistence of multiple
versions of OSS functions within target programs, making
version identification and security management challenging.
In this regard, we present TIVER, a novel approach for identi-
fying adaptive versions of C/C++ OSS components, utilizing
two key techniques: finer-grained versioning and OSS code
clustering. Our experiments have demonstrated that TIVER
effectively identifies adaptive versions while distinguishing du-
plicate components and eliminating noise. TIVER can be used
to perform effective vulnerability management and enhance
supply chain security.

DATA AVAILABILITY

The source code of TIVER and the package for replicating
the experimental results are available in the public repository:
https://github.com/Genius-Choi/TIVER-public.

ACKNOWLEDGMENT

We appreciate anonymous reviewers for their valuable com-
ments. This work was supported by Institute of Information
& Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.RS-2022-
II220277, Development of SBOM Technologies for Securing
Software Supply Chains, and No.RS-2024-00440780, Devel-
opment of Automated SBOM and VEX Verification Technolo-
gies for Securing Software Supply Chains). In addition, this
research was supported by Culture, Sports and Tourism R&D
Program through the Korea Creative Content Agency grant
funded by the Ministry of Culture, Sports and Tourism in
2024 (Project Name: International Collaborative Research and
Global Talent Development for the Development of Copyright
Management and Protection Technologies for Generative AI,
Project Number: RS-2024-00345025).

2468

https://github.com/Genius-Choi/TIVER-public

REFERENCES

[1] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “DéjàVu: a map of code duplicates on GitHub,” in
Proceedings of the ACM on Programming Languages, vol. 1, no.
(OOPSLA). ACM, 2017, p. 84.

[2] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying Open-
Source License Violation and 1-day Security Risk at Large Scale,” in
Proceedings of the 24th ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 2169–2185.

[3] X. Zhan, T. Liu, L. Fan, L. Li, S. Chen, X. Luo, and Y. Liu, “Research
on Third-Party Libraries in Android Apps: A Taxonomy and Systematic
Literature Review,” IEEE Transactions on Software Engineering, 2021.

[4] S. Woo, S. Park, S. Kim, H. Lee, and H. Oh, “CENTRIS: A Precise
and Scalable Approach for Identifying Modified Open-Source Software
Reuse,” in Proceedings of the IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), 2021, pp. 860–872.

[5] Y. Xiao, B. Chen, C. Yu, Z. Xu, Z. Yuan, F. Li, B. Liu, Y. Liu, W. Huo,
W. Zou, and W. Shi, “MVP: Detecting Vulnerabilities using Patch-
Enhanced Vulnerability Signatures,” in Proceedings of the 29th USENIX
Security Symposium (Security), 2020, pp. 1165–1182.

[6] S. Woo, D. Lee, S. Park, H. Lee, and S. Dietrich, “V0Finder: Discovering
the Correct Origin of Publicly Reported Software Vulnerabilities,” in
Proceedings of the 30th USENIX Security Symposium (Security), 2021,
pp. 3041–3058.

[7] C. Liu, S. Chen, L. Fan, B. Chen, Y. Liu, and X. Peng, “Demystifying the
Vulnerability Propagation and Its Evolution via Dependency Trees in the
NPM Ecosystem,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 672–684.

[8] S. Woo, H. Hong, E. Choi, and H. Lee, “MOVERY: A Precise Approach
for Modified Vulnerable Code Clone Discovery from Modified Open-
Source Software Components,” in Proceedings of the 31st USENIX
Security Symposium (Security), 2022, pp. 3037–3053.

[9] Y. Wu, Z. Yu, M. Wen, Q. Li, D. Zou, and H. Jin, “Understanding
the Threats of Upstream Vulnerabilities to Downstream Projects in the
Maven Ecosystem,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 1046–1058.

[10] Y. Gu, L. Ying, Y. Pu, X. Hu, H. Chai, R. Wang, X. Gao, and H. Duan,
“Investigating package related security threats in software registries,” in
2023 IEEE Symposium on Security and Privacy (SP), 2023.

[11] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu,
“ATVHunter: Reliable Version Detection of Third-Party Libraries for
Vulnerability Identification in Android Applications,” in Proceedings
of the 43rd International Conference on Software Engineering (ICSE).
IEEE, 2021, pp. 1695–1707.

[12] S. Woo, E. Choi, H. Lee, and H. Oh, “V1SCAN: Discovering 1-day Vul-
nerabilities in Reused C/C++ Open-source Software Components Using
Code Classification Techniques,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 6541–6556.

[13] A. Dann, B. Hermann, and E. Bodden, “UPCY: Safely Updating Out-
dated Dependencies,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 2023, pp. 233–244.

[14] C. Dong, S. Li, S. Yang, Y. Xiao, Y. Wang, H. Li, Z. Li, and
L. Sun, “LibvDiff: Library Version Difference Guided OSS Version
Identification in Binaries,” in Proceedings of the 46th International
Conference on Software Engineering (ICSE), 2024, pp. 791–802.

[15] W. Tang, Z. Xu, C. Liu, J. Wu, S. Yang, Y. Li, P. Luo, and Y. Liu,
“Towards Understanding Third-party Library Dependency in C/C++
Ecosystem,” in Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering, 2022, pp. 1–12.

[16] Y. Na, S. Woo, J. Lee, and H. Lee, “CNEPS: A Precise Approach
for Examining Dependencies Among Third-Party C/C++ Open-Source
Components,” in Proceedings of the 46th International Conference on
Software Engineering (ICSE), 2024, pp. 2918–2929.

[17] R. Croft, M. Babor, and H. Chen, “Noisy label learning for security
defects,” in 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE). IEEE/ACM, 2024, pp. 435–447.

[18] F. Wallner, B. K. Aichernig, and C. Burghard, “It’s Not a Feature,
It’s a Bug: Fault-Tolerant Model Mining from Noisy Data,” in 2024
IEEE/ACM 46th International Conference on Software Engineering
(ICSE). IEEE/ACM, 2024, pp. 327–339.

[19] B. Liang, P. Bian, Y. Zhang, W. Shi, W. You, and Y. Cai,
“AntMiner: mining more bugs by reducing noise interference,” in 2024

IEEE/ACM 46th International Conference on Software Engineering
(ICSE). IEEE/ACM, 2016, pp. 333–344.

[20] J. Wu, Z. Xu, W. Tang, L. Zhang, Y. Wu, C. Liu, K. Sun, L. Zhao,
and Y. Liu, “OSSFP: Precise and Scalable C/C++ Third-Party Library
Detection using Fingerprinting Functions,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 270–282.

[21] N. Telecommunications and I. Administration, “NTIA Software Com-
ponent Transparency with SBOM (Software Bill of Materials),” 2024,
https://www.ntia.doc.gov/SoftwareTransparency.

[22] C. W. Krueger, “Software reuse,” in ACM Computing Surveys (CSUR),
vol. 24, no. 2. ACM, 1992, pp. 131–183.

[23] A. Decan and T. Mens, “What Do Package Dependencies Tell Us About
Semantic Versioning?” IEEE Transactions on Software Engineering
(TSE), vol. 47, no. 6, pp. 1226–1240, 2019.

[24] S. Kim, S. Woo, H. Lee, and H. Oh, “VUDDY: A Scalable Approach
for Vulnerable Code Clone Discovery,” in Proceedings of the 38th IEEE
Symposium on Security and Privacy (SP), 2017, pp. 595–614.

[25] C. team, “Dataset for CENTRIS,” Jul. 2024.
[26] NPM, “Node Package Manager,” 2024, https://www.npmjs.com/.
[27] Ctags, “Universal Ctags,” 2024, https://github.com/universal-ctags/ctags.
[28] Anytree, “Simple, lightweight and extensible Tree data structure.” 2024,

https://github.com/c0fec0de/anytree.
[29] S. Woo, E. Choi, and H. Lee, “A large-scale analysis of the effectiveness

of publicly reported security patches,” Computers & Security, p. 104181,
2024.

[30] OWASP, “CycloneDX,” https://cyclonedx.org/.
[31] M. Backes, S. Bugiel, and E. Derr, “Reliable Third-Party Library

Detection in Android and its Security Applications,” in Proceedings of
the 23rd ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2016, pp. 356–367.

[32] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and
W. Huo, “LibD: Scalable and Precise Third-party Library Detection in
Android Markets,” in Proceedings of the 39th International Conference
on Software Engineering (ICSE). IEEE, 2017, pp. 335–346.

[33] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: Fast and Accurate
Detection of Third-party Libraries in Android Apps,” in Proceedings of
the 38th International Conference on Software Engineering: Companion
(ICSE-Companion), 2016, pp. 653–656.

[34] W. Tang, D. Chen, and P. Luo, “BCFinder: A Lightweight and Platform-
independent Tool to Find Third-party Components in Binaries,” in
Proceedings of the 25th Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2018, pp. 288–297.

[35] L. Jiang, J. An, H. Huang, Q. Tang, S. Nie, S. WU, and Y. Zhang,
“BinaryAI: Binary Software Composition Analysis via Intelligent Binary
Source Code Matching,” in Proceedings of the 46th International
Conference on Software Engineering (ICSE), 2024, pp. 2771–2783.

[36] X. Xu, Q. Zheng, Z. Yan, M. Fan, A. Jia, and T. Liu, “Interpretation-
enabled software reuse detection based on a multi-level birthmark
model,” in Proceedings of the 43rd International Conference on Software
Engineering (ICSE), 2021.

[37] X. Hu, W. Zhang, H. Li, Y. Hu, Z. Yan, X. Wang, and L. Sun, “VES: A
Component Version Extracting System for Large-Scale IoT Firmwares,”
in Wireless Algorithms, Systems, and Applications: 15th International
Conference, WASA 2020. ACM, 2020, pp. 39–48.

[38] W. Zhang, Y. Chen, H. Li, Z. Li, and L. Sun, “PANDORA: A Scalable
and Efficient Scheme to Extract Version of Binaries in IoT Firmwares,”
in IEEE International Conference on Communications (ICC). IEEE,
2018, pp. 1–6.

[39] S. Almanee, A. Ünal, M. Payer, and J. Garcia, “Too Quiet in the
Library: An Empirical Study of Security Updates in Android Apps’
Native Code,” in Proceedings of the 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 1347–1359.

[40] W. Tang, Y. Wang, H. Zhang, S. Han, P. Luo, and D. Zhang, “LibDB:
an effective and efficient framework for detecting third-party libraries
in binaries,” in Proceedings of the 19th International Conference on
Mining Software Repositories (MSE), 2022, pp. 423–434.

[41] B. Zhao, S. Ji, J. Xu, Y. Tian, Q. Wei, Q. Wang, C. Lyu, X. Zhang,
C. Lin, J. Wu, and R. Beyah, “A large-scale empirical analysis of the
vulnerabilities introduced by third-party components in IoT firmware,”
in ISSTA 2022: Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2022, pp. 442–
454.

2469

https://www.ntia.doc.gov/SoftwareTransparency
https://www.npmjs.com/
https://github.com/universal-ctags/ctags
https://github.com/c0fec0de/anytree
https://cyclonedx.org/

